Quadratic variations for the fractional-colored stochastic heat equation∗
نویسندگان
چکیده
Using multiple stochastic integrals and Malliavin calculus, we analyze the quadratic variations of a class of Gaussian processes that contains the linear stochastic heat equation on R driven by a non-white noise which is fractional Gaussian with respect to the time variable (Hurst parameter H) and has colored spatial covariance of α-Riesz-kernel type. The processes in this class are self-similar in time with a parameter K distinct from H, and have path regularity properties which are very close to those of fractional Brownian motion (fBm) with Hurst parameter K (in the heat equation case, K = H − (d − α)/4 ). However the processes exhibit marked inhomogeneities which cause naïve heuristic renormalization arguments based on K to fail, and require delicate computations to establish the asymptotic behavior of the quadratic variation. A phase transition between normal and non-normal asymptotics appears, which does not correspond to the familiar threshold K = 3/4 known in the case of fBm. We apply our results to construct an estimator for H and to study its asymptotic behavior.
منابع مشابه
The Stochastic Heat Equation with Fractional-Colored Noise: Existence of the Solution
Abstract. In this article we consider the stochastic heat equation ut −∆u = Ḃ in (0, T )×Rd, with vanishing initial conditions, driven by a Gaussian noise Ḃ which is fractional in time, with Hurst index H ∈ (1/2, 1), and colored in space, with spatial covariance given by a function f . Our main result gives the necessary and sufficient condition on H for the existence of a solution. When f is t...
متن کاملThe Stochastic Heat Equation with a Fractional-colored Noise: Existence of the Solution
Abstract. In this article we consider the stochastic heat equation ut −∆u = Ḃ in (0, T )× R, with vanishing initial conditions, driven by a Gaussian noise Ḃ which is fractional in time, with Hurst index H ∈ (1/2, 1), and colored in space, with spatial covariance given by a function f . Our main result gives the necessary and sufficient condition on H for the existence of the process solution. W...
متن کاملStochastic Heat Equation with Multiplicative Fractional-Colored Noise
We consider the stochastic heat equation with multiplicative noise ut = 1 2 ∆u + uẆ in R+ × R , whose solution is interpreted in the mild sense. The noise Ẇ is fractional in time (with Hurst index H ≥ 1/2), and colored in space (with spatial covariance kernel f). When H > 1/2, the equation generalizes the Itô-sense equation for H = 1/2. We prove that if f is the Riesz kernel of order α, or the ...
متن کاملExact variations for stochastic heat equations driven by space–time white noise
This paper calculates the exact quadratic variation in space and quartic variation in time for the solutions to a one dimensional stochastic heat equation driven by a multiplicative space-time white noise.
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کامل